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Abstract-The response of the hysteretic oscillator subjected to periodic actions presents aspects
that are not yet completely clarified. In this paper the elastoplastic oscillator is studied with tools
that are typical of nonlinear dynamics as developed in recent years. Using iterated maps, including
the Poincare map, it is shown how the dynamics concerned can be reduced to a one-dimensional
problem. An extended numerical survey shows how the response of the elastoplastic oscillator is
always asymptotically stable, with the exception of a zero measure set in the space of control
variables where it is only stable. Moreover solutions having a period other than that of the external
force do not exist, though for some parameter values higher harmonics may assume a very relevant
role.

INTRODUCTION

Much effort has been devoted to attempting to understand nonlinear one-dof oscillator
behaviour under harmonic forcing, generally assuming very simple constitutive laws, often
polynomials of second or third order [see e.g. Guckenheimer and Holmes (1983) and
Wiggins (1990)]. Hysteretic oscillators have received much less attention because their
treatment is not easily framed in the context of existing analytical techniques. Hysteretic
constitutive laws are not represented by single-valued functions in displacement, and also,
in many of the fields where nonlinear dynamics has taken root and is better developed,
purely hysteretic behaviour is not common.

Hysteretic behaviour is very important in civil engineering. However, periodic forces
are not so common and there are not very many studies of the periodic response of the
hysteretic oscillator in this field. Nowadays, new challenges and new knowledge make the
study of the response of hysteretic oscillators to harmonic forces worth studying more
closely; considering also that comprehension of behaviour under sinusoidal input may
lead to better understanding of behaviour under different excitations. Among hysteretic
oscillators the elastoplastic oscillator, on account of its simplicity and its historical import
ance, has a special role. The earliest studies used mainly approximate analytical techniques
such as the harmonic balance or slowly varying parameters (Caughey, 1960; Jennings,
1964 ; Iwan, 1965). In a more recent paper by Masri (1975) a simple technique was developed
that gives exact results for the most common loading-unloading cycle situations, in which
no intermediate unloading occurs. Eventually, with the introduction of an iterated map in
Miller and Butler (1988) a satisfactory numerical technique was developed to evaluate the
stationary response and some progress was also made regarding stability. The intermediate
unloading was shown to occur for only a limited portion of the state parameter space.
Though many aspects of the elastoplastic response to harmonic forces are known-namely
that the response has an unbounded resonance above a critical value of the force, and that
in some situations higher harmonics may be relevant-some questions concerning stability
and the various possible kinds of periodic motions still remain unanswered.

In all the studies mentioned the constitutive relation is modelled in terms of force and
displacement. Because of the non-single-valuedness of this function, concepts such as phase
space, Poincare map, Floquet theory, etc. cannot be applied directly. In this paper the
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elastoplastic oscillator is modelled in an incremental form which leads to a phase space
with force and velocity as variables [see e.g. Capecchi (1991)]. In this way the problem is
reduced to the study of a system of two equations defined by ordinary functions, as is
commonly the case in classical nonlinear dynamics; many useful concepts can then be
applied directly. The first part of this paper deals with theoretical aspects; the appropriate
phase space is introduced and it is shown that the displacement is a dependent variable and
that the oscillator dynamics are essentially one-dimensional. Iterated maps are then defined
including the Poincare map and some one-dimensional maps. The strategy developed in
Miller and Butler (1988) is given a sounder foundation and new formulations are found
that allow the periodic response and its stability to be studied with very little computational
effort. Applications are given in the last section. The extended numerical survey enables an
answer to be given to the still unclarified phenomena concerning the stability and the
possibility of subharmonic orbits.

EQUATION OF MOTION

The motion of an oscillator having a constitutive law with memory, such as the
elastoplastic one, cannot be described by an ordinary second order differential equation. A
more general equation is required, defined by functional operators that can, in principle,
be written as:

.x+f = p(t), (1)

where x, f and p are respectively the response, restoring force and excitation, and proper
nondimensionalization is chosen. The symbol f stands for a functional of x(t) instead of a
function.

This approach does not allow the use of the state phase concept; nor, consequently,
can the problem be studied in the classical framework of nonlinear dynamics. For this
reason it is useful to restate eqn (1) more suitably. If only the elastoplastic oscillator (EPL)
is considered, the motion can still be represented by an ordinary differential equation, but
of third order, where the state variables are not only x and i but also x. Indeed,jis in any
case a function of t with derivativeJthat can be given as a function offand i in the form:

. . {O f sign (i) ~ 1,
f = h(x,j) = i f sign (i) < 1. (2)

The function h(i,j) defined above is shown in Fig. 1. Though having a high degree of

Fig. I. Surface h(v,fl for EPL.
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irregularity, it is a proper function of x andf, i.e. it is single valued. The differential equation
of third order is obtained from the derivative of eqn (1) with respect to time:

x+h(x,p-x) = p(t), (3)

where the expression forfas provided by (1) is made explicit in h(x, f). Equation (3) defines
the motion together with the initial conditions x(to), x(to), x(to) at a given time to. If x is
not considered an independent variable, eqn (3) can also be seen as a second order differ
ential equation in the velocity v = x, that needs the two initial conditions v(to) and v(to).
In the following x will always be considered as a dependent variable and the elastoplastic
oscillator will be studied in a two-dimensional phase space. The variable x, where needed,
is obtained through a numerical integration of X.

In nonlinear dynamical systems the problem of motion is usually framed within the
context of vector fields. Here it is assumed that time t is not a phase variable so that the
vector field contains t as a parameter. To obtain the vector field for EPL, eqn (3) must be
rewritten as a system of two first order differential equations. The most natural choice
would be to assume a = x and v as phase variables, however reference to f and v is more
convenient, because in this way the nature of the phase space as a manifold M with
boundaries is self-evident. With x = v eqns (1) and (2) read:

v= p(t)-f,

f =h(v,f). (4)

The time dependent vector field is then defined by XI: (t, v,j) -+ [(v, f), (p(t) - f, h(v,f))],
where v andftake values in M = {(v,f)lvER,f E [-1, In. The problem thus formulated
presents strong analogies with the impact problem where the boundaries of the phase space
manifold are given by stops, see e.g. Foale and Bishop (1992). The elastoplastic system may
indeed be considered as a double sided impacting system having a vanishing coefficient of
restitution and a delayed release.

Equations (4) show that the EPL dynamics can be represented in the standard form
in the same way as a classical nonlinear elastic oscillator. Its main peculiarities, apart from
the fact that x is no longer a state variable, both lie in the nature of the phase space M and
in the vector field X" Manifold M is characterized by the presence of a boundary, while XI'
because of the low smoothness ofh(v, f) is only C - 1. These two circumstances do not allow
the automatic application of many fundamental theorems of nonlinear dynamics. An
immediate effect of XI being only C- 1 is that there is no one-to-one relation between a
point pE M and its image qE M due to the flow ¢I,t of the vector field XI because h(v,j)
violates the Lipschitz condition with respect to f Notice that the use of the word flow is
slightly improper because ¢"t is not a diffeomorphism on M; here it simply means that ¢I,t
is the map that moves points p at instant t to points q at instants t +r. The absence ofa one
to-one correspondence between p and q can be heuristically deduced from the examination of
f = h(v, f), which is an ordinary differential equation infwhen v(t) is given. Figure 2 shows
some possible paths emanating from various Pi> with increasing initial values forf, to reach
the single final position q.

v f

Fig. 2. Time-histories ofJ(t) for assigned v(t).
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ITERATED MAPS

For the case of harmonic functions p(t), the vector field X, reads:

v= ycos wt-j,

j = h(v,j), (5)

where the coefficient y stands for the dimensionless intensity of the forcing action and w is
its frequency, normalized to the elastic frequency of the oscillator. The main aspects of
oscillator dynamics can be evidenced without an explicit study of the vector field X, if the
problem is formulated using a map defined in M. A typical map is the Poincare map, PI :

"

v(to), j(to) ..... v(to +T), j(to +T),

where to is &n arbitrary time and T = 2n/w. P'o is referred to as the Poincare map based at
to. It only depends on the two control parameters y and w. Its iterated application to a
point p is equivalent to stroboscopically sampling the point's trajectory at an interval T.
An orbit of a point pEM is given by the set O(p) = {P~o(p)liEZ}. When O(p) is finite, p
is called periodic and the smallest integer n, so that p = P7,,(p), is called the period ofp and
O(p) a subharmonic orbit of period n. Order n periodic points are obtained from fixed
points of P7o' namely by solving an algebraic (not a differential) equation:

(6)

For a classical nonlinear oscillator, Pto is a diffeomorphism of M of the same class as
the vector field; moreover, the choice of to is trivial because two maps PIa and PI, are
conjugate, namely there is a diffeomorphism g in M such that g Q PI" = PI, 0 g. This means
that the eigenvalues of the tangent map TpPto do not depend on to. For the elastoplastic
oscillator Pta is no longer a diffeomorphism. In particular Pto is continuous and endowed
with a tangent map TP,o which is also continuous, with the exception of a few points.
However it does not admit an inverse because it does not define a one-to-one corre
spondence. The conjugacy property is instead maintained.

The domain of Pto is the noncompact manifold M. If only the asymptotic behavior is
of interest, then the study can be restricted to a compact set M*. This can be seen better
by referring to the vector field. Whatever the initial conditions are, an instant t* exists when
the oscillator moves out of a plastic phase with v = 0 andj = ± 1; from now on v cannot
exceed a maximum value vt-. The global maximum v of vt> is bounded; it is obtained by
evaluating vt> by integrating (5) with initial conditions v(t*) O,f(t*) = ± I, and varying
t* in [0, 1') (which gives all the possibilities due to the periodicity of the excitation).

The non-invertibility of Pto at each point p of M implies that TpPto is singular having
rank equal to one, and thus a zero eigenvalue. The image S = Pto(M) is not a submanifold
ofM. It is however a collection ofa few one-dimensional submanifolds whose tangent space
at a point Pto(p) is the eigenvector of TpPto associated with the non-zero eigenvalue. Figure

b)
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Fig. 3. Image of the phase plane under P,,,.
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3 shows images S* of M* under Plo for to = 0.273, ill = 1.0 and y = (0.75,1.0). In the figure
sharp zones are evident indicating discontinuity of TP,o' moreover there are points where
S*.is not locally homeomorphic to R because more than one branch departs from them.
The curve S is the locus of points obtained by integrating (5) over a duration T - 't', starting
from initial conditions (0, ± I), where 't' is the time interval needed to leave the plastic state
first. More precisely, S is the union of two curves C+ and C-. Curve C+ is composed
of the straight line (v, I) and a curve that is represented parametrically by (v,/) =
cPlo+t.T~t(O, I) with 't' e [0,11; C- is identical but with opposite sign for the force.
Assuming as an initial condition (0, -1), a point p('t') e C- immediately escapes from the
plastic phase, otherwise p('t') e C+. For low values of y the image of M also includes those
open sets of points that represent initial conditions that do not become plastic during a
period T. They are indicated with a shaded region in Fig. 3(a).

The prevailing one-dimensional nature of EPL dynamics suggests that it is possible to
study the main characteristic of the motion with maps defined over one-dimensional sets
(or possibly manifolds). If the time to is chosen in such a way that the fixed point is inside
a plastic region, like point P of Fig. 3(b), a neighbourhood having a nonzero measure exists
for which it is possible to define a map by referring to the state variable v only, because
integration over a period always returns f to the limit value ± 1. The search for periodic
orbits of EPL is reduced to the solution of the fixed point problem:

(7)

Qlo is none other than the Poincare map with contracted domain and range. The practical
application of eqn (7) has some drawbacks because the subinterval of (0, 11 for correct
values of the base time to has to be estimated a priori.

A more general one-dimensional map is obtained by referring to the image S of M.
Because all the periodic orbits of PIO belong to S, the whole dynamics of EPL could in
principle be studied with a map over this set. Consider a point Po == 3eC- [Fig.4(a)],
defined by the parameter value 't'o of its parametric representation (v, f) = cPlo+t,T-t(O, -I)
(Point Po is obtained starting from °at to, entering the plastic phase in 1 and leaving it at
to+'t' from 2). The image PI == 6 = P10(Po) corresponds to the instant 't'\> path 3-4-5. This
may be evaluated from the time A't'p needed to pass from (0, -1), assumed as initial
condition at instant 't'o, to the new exit from the plastic phase (0, -1), path 2-3-4-5:
't'l = A't'p-(T-'t'o). Similar considerations are valid for curve C+, A relation between 't'o

and 't'l is thus established. If t' I and 't' 0 are considered apart from the modulus T, it is possible
to define a one-dimensional map: G: [0, 11 ..... [0, 11 that may possess fixed points. These
fixed points correspond to periodic solutions with an a priori unknown period, that must
be evaluated by applying Pto + to to the point (0, ± I). Loosely, G is a map that transforms
a given instant 10 = to+'t'o corresponding to the initial condition (0, ± 1) to an instant
11 = to + t' dor which the couple (0, ± 1) again appears. With this meaning G appears similar
to the map reported in Miller and Butler (1988). Notice that G is discontinuous in [0,11

v

5
1j 1j'+T

f4f

2 3
l:t:::::::=:=::::5~~6 [v(7"0)' f (Jo) ]

[v(1j ),f('ii)]

a)

Fig. 4. One-dimensional map over S.
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because C = C+ u C- and the passage from C+ to c- means assuming a discontinuity of
r: the same point P has two different values for the parameter T according to whether it is
considered in C+ orin C-. This reparametrization can be avoided as follows: letpo(ro) E C
be projected by Pto into C +. However P~o (Po) E C - for some n > 0, because the fixed points
certainly belong to C + n C -. The relation between the first passage r') through (0, - I) and
To and I1Tp is the same as before, except for the modulus T: T') = I1Tp - (nT-To). Of course
the map G remains discontinuous even with this slight change. The situation is made clear
in Fig. 4, where points PI == 6 which are close to 5, in cases (a) and (b), but have very
different parameter values T I •

A different point of view suggests choosing the kind of fixed point that is wanted,
namely the couple ofvalues v, fand searching for the value of to for which Pto(v, f) = (v, f).
Values of v and f certainly reached during an elastoplastic cycle are (0, - I), or (0, + I),
corresponding to the exit from a plastic state. The dynamics of Pt is then reduced to the

o
search for values of to for which P~o(O, ± l) = (0, ± I). The algorithmic implementation of
this concept, which results in two equations and one unknown, is a minimum problem with
the objective function:

(8)

where the Euclidean norm is assumed. From a technical point of view it may however be
convenient to seek the solution of a single equation in to :

(9)

and to verify thatf = ± l.
The use of the map G could be helpful when a primarily analytical approach is pursued,

because the simple nature of the constitutive law for EPL allows a simple expression of
t) = G(to), though not in an explicit form. For numerical purposes it would lead to a more
complex problem than that given by eqns (7), (8) and (9) because the definition of G
requires the computation of the unloading point, which requires the solution of a nonlinear
equation. Moreover G is not a continuous function over [0, T], even though it is generally
continuous around a fixed point. If the previous concepts are to be extended to many dof
systems the use of the Poincare map with a known fixed point and unknown base is
preferable on account of its higher numerical efficiency and its greater conceptual
simplicity.

MAP EVALUAnON

The various maps introduced must be integrated over the vector field. In principle this
can be accomplished with any suitable method such as the fourth order Runge-Kutta
method. Numerical experience has shown that for the elastoplastic oscillator an explicit
integration technique, such as the Runge-Kutta, gives satisfactory results only if the inte
gration is accomplished using very small steps. This is because of the singularity of h(v, f).
For some parameter values y and w where the response is very complex, a step of 1000/T
must be adopted, making numerical analysis very expensive. In order to eliminate any
possible source of uncontrolled errors and to save computation time, an exact integration
technique is used here.

The oscillator response is divided into elastic and plastic phases. In each phase the
equation of motion is linear; using v as variable, it is obtained by deriving the first of
equations (5) :

if+ v = - yw sin wt ELASTIC,

if = - yw sin wt PLASTIC. (10)

The difficulty of integration is shifted to the evaluation of instants ti and values Vi where a
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change of state occurs. The conceptual separation of plastic and elastic phases not only
enables the implementation of an efficient numerical tool, but also furnishes theoretical
arguments. If L",., and p"'" indicate the linear elastic and plastic operators that provide
(v, f) after the interval ri, starting from (v, f)", the Poincare map is the product ofoperators:

(11)

This is a chain whose structure depends on the actual motion ofEPL. Because the operators
that appear are continuous in (v, f) and in ti , P'o is continuous. For the same reason TP,o
is also continuous, except in those points that are critical for the chain structure (II). A
point p is singular for TP,o ifp + /:ip corresponds to a different operator chain.

Where symmetric solutions are concerned, only reduced maps need be considered:
P 1/2 R 1/2 so that P 1/ 2

0 P 1/2 = P G 1/2 0 G 1/2 = G requiring half the computational effort.
to " to 10 to' ,

Similar considerations are also valid for eqns (8) and (9). Map G 1/2 deserves a comment.
This is the map that brings time from instant to, corresponding to p_ = (0, -1), to instant
t l corresponding to P+ = (0,1). Note that though points P+ and p_ generally alternate
regularly, sequences p+P+P_P_ are possible, as reported in Miller and Butler (1988).

STABILITY ANALYSIS

The stability of a fixed point p of a map W is generally checked by looking at the
eigenvalues Ai of TpW. If IAil < 1'if i, then p is asymptotically stable; if, on the contrary,
3 i s.t.IAd > 1, then p is unstable. This appears evident if the linear approximation of W,
around p is considered:

(12)

These considerations apply to EPL as well, where the definition of W varies according
to whether p is a point within M or a boundary point. In the first situation W = P'o is two
dimensional and a stability check calls for the numerical evaluation of TpP,o' computing /:i
P'o//:iv, /:iP,o!/:iJ, for II/:ivll, II/:ifll < be' and then evaluating eigenvalues Ai' one of which is
zero. In the second situation W = Q,o is one-dimensional. The single eigenvalue is evaluated
with the relation A= [Q'o(v+/:iv)-v]//:iv, for II/:ivll < be' Ifthe fixed points are evaluated
as discussed in previous sections neither the first situation nor the second can be applied,
because to is a transition instant and TpWis singular. In practice it is enough to rescale W
by choosing an instant t~ where the fixed point has v i= 0, preferably on the boundary 8M,
where stability analysis is easier. Because of the conjugacy of the Poincare maps based at
different instants to, it follows that the nonzero eigenvalue of Tp W lo is the same as that of
Tp WI.' so that there is no ambiguity in the use of different maps.

Stability can also be checked by referring to map G. It first must be shown that a fixed
point p = (0, -I) is stable for P'o if, and only if, the fixed point ro of G is stable. Let
Po = (0, -1) be the fixed point whose stability is under study, and Up a neighbour with
diameter bp. As P,o is continuous for each p EUp, P;~2 gives a point qE Uq, where Uq is a
neighbour of qo = (0,1) of diameter bq that can be arbitrarily reduced by reducing bp • It is
then possible to find e so that <PT/2,e = qo, and there is a one-to-one correspondence q = g(e)
that is continuous and well defined for e > °and e < 0, because all points belong to the
forward integrated orbit. With reference to Fig. 5 the Poincare map p'o can be expressed
as:

(13)

where <P"'<2 is the phase flux from rl with duration r2 and t 1= G I/2(ro+e)-ro. The first
term moves p to q, which is delayed by e with respect to qo. The second term leads from q
to qo, the third leads to Po, and the last term eventually completes the map (e' = T/2 - t I - e),
leading to p'. Ifrois a stable fixed point for G, then G 1/2 is a contractive map and le'l < lei.
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v

P'

Fig. 5. Relation between stability of G and P,o'

For the continuity ofg(e), point p' resulting from application of 4Jro+ T-e',e' is linked to q by
IIp'-Poll < Ilq-qoll, as le'l < lei. Map p~~2 is thus contractive as, consequently, is Pro'

Similarly, if to is unstable so is Po.

APPLICAnONS

Before beginning to study the stationary response and stability ofEPL, it will be shown
how various formulations of the iterated map interpret the same phenomenon. In Fig. 6
trends of G and function l(to) are reported for y = 1.05 and various values ofw. For greater
clarity reference is made to a situation where higher harmonics are relevant. Other maps
are similar in structure though more regular. Map G is discontinuous in [0,11 and, for
w = 0.35, admits a fixed point t~) with an eigenvalue A. = 1, so that it is at the boundary of
stability. For w < 0.35 the fixed point of G abruptly moves to the right, though it remains
stable; the same occurs for w > 0.35. There is no generic bifurcation behaviour because

w <0.35

G(to)

T;'2 -y= 1.05

to t~ t~
to

a
a Ty2

2.5 I( to)
w= 0.35

a T/2
Fig. 6. Fixed points of G and zeroes of I(to)·

T
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-1.0 -0.5 0.5 1.0

v

at}V) t 0 =10.3

Fig. 7. Fixed points of Q,o'

oG/(oO),oto) does not meet the necessary transversality condition (Wiggins, 1990). For
0) = 0.335 the map G no longer admits fixed points. A scrutiny of the figure shows that two
fixed points tY;) and t~) exist for G2. This means that the unique periodic response of EPL
corresponding to these two fixed points possesses four loading and unloading elastic-plastic
phases. A numerical survey shows that, in fact, only fixed points of G and G2 exist and the
latter are limited to a very thin portion of the control variable space, in agreement with
Miller and Butler (1988). The trend of I (t 0) confirms the previous results and considerations.
Values of to for which (0, -1) is a fixed point of Pto coincide exactly with fixed points of
G,G 2

•

Figure 7 reports the trend of Qto for to = 10.30 and the values of 0) and y previously
considered. Qto also shows an eigenvalue A. = 1for 0) = 0.35; now the map has a fixed point
for 0) = 0.335 as well. Here the eigenvalue is very small as evidenced by the flat shape of
Qto around the fixed point Vb. This circumstance indicates how efficiently the fixed points
of Qto could be evaluated with the Newton algorithm. A single iteration is sometimes
enough for a very accurate solution. The regular trend of Qt. is maintained, too, for 0) close
to the critical value 0) = 0.35.

FREQUENCY RESPONSE CURVES

The most common representation of the periodic response of a one~dof oscillator is
the frequency-response curve (f.r.c.) for various values of the excitation amplitude y. In
principle f.r.c.s may possess various branches. One defines the main branch as that which
goes towards the stationary elastic curve for low amplitude. Other branches are called
bifurcated or isola according to whether they are connected to the main branch or disjointed.

Step-by-step integrations show how the harmonic response of the oscillator assump
tion, made in earlier approximate studies (Caughey, 1960; Capecchi and Vestroni, 1985,
1990; DebChaudhury, 1985) is largely unsatisfactory in some situations. Figure 8 illustrates
time-histories of velocity and force and orbits in the phase space V, f for various values of
y and 0), from which it is clear that the harmonic motion assumption is not always
admissible. The same figure also shows that the other assumption often made, concerning
the modalities of loading and unloading-namely no intermediate unloadings from the
plastic state-is incorrect. It is thus clear that an accurate numerical analysis such as that
developed here is required.

The main branch of exact f.r.c.s for the EPL oscillator is already described in the
literature referring to the variable x (Miller and Butler, 1988; Capecchi, 1991). Because of
the central role played here by the variable V the f.r.c.s are included for the sake of
completeness in Fig. 9 with reference to this last variable. For low values of y exact and
approximate curves differ only slightly. For y = 1 the behaviour near the superharmonic
regions becomes complex and resonances for 0) = 1/3,0)= 1/5,. " are evidenced. For
y > 1 unbounded resonances occur for 0) = 0, in contrast to the harmonic balance method,
which predicts unbounded resonance for y > 4/n. A further increase of y makes the super
harmonic resonances gradually disappear until, for y > 1.35, the frequency response curve
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T T
-------t-

t t v

CJ= 0.10 y= 2.0

f

CJ= 0.10 y= 1.0

f

w=1/3 y= 1.05

Fig. 8. Phase plots for various y and w values.

appears as a hyperbole having the two coordinate axes as asymptotes. The harmonic balance
method achieves the same result for y > 4/n.

OTHER SOLUTIONS AND STABILITY

In oscillators with a two-dimensio'lal phase space the numerical search for all the n-T
periodic stable and unstable solutions, which in principle are infinite, cannot generally be
pursued by looking for all the fixed points of the Poincare map P7o' because the algorithms
needed to solve the algebraic equations (6) always require a priori estimates of the solution,
which are not usually precise enough. For this reason a cell-to-cell mapping procedure is
preferred [see e.g. Hsu (1987)], which can partition the phase space into attracting basins,
i.e. the sets of initial conditions that, under iterated mapping, lead to the various stable

10. v

411T

1.51.0

0.95

0.50.0

W
4--.L---,----,-----,-------r--,--,---,-- -.-,----,----

2.0

3.

Fig. 9. Frequency-response curves in tenns of velocity.
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periodic solutions. The systematic exploration of the control parameters wand y using this
procedure, though feasible, is very time consuming.

For the elastoplastic oscillator, the treatment adopted circumvents the need to consider
initial conditions in the phase space since, as shown, all the possible periodic solutions are
furnished by the solutions of eqn (9), for toE [0,1']. Although these solutions are achieved
using the Newton method, which requires an initial estimate of to, the difficulties are greatly
reduced by the one-dimensional nature of the problem, which can be tackled efficiently. It
is then possible to explore an exhaustive set of values for the control variables wand y, so
that the presence of stable or unstable solutions other than those belonging to the main
branch (with the possibility of different periods) and the stability of the periodic solutions,
as yet unclarified in the literature, can be verified with a high degree of reliability, though
not certainty.

In practice, to find the solutions of Q7o(0) = 0, the interval [0,1'] of variation of to is
partitioned into small parts, a step !1to = T/250 being considered sufficient. For each value
of to the vector field (5) is integrated exactly over n periods and the value of Q7o(0) is
checked. When a zero is approximately localized, its position is defined more precisely with
the Newton method. Subharmonics of period n = 1,2,3,4,5 were sought by varying y,w
in a fairly large domain of the control parameter space. More precisely for WE [0,2.5], Yis
varied in [0,5] with a grid I1w = l1y = 0.025. For WE (2.5, 10], Yis varied according to the
law y = (w 2

- 1) * {3, with {3 E [1,5] and a grid I1w = 0.2 and 11{3 = 0.1 ; this is because the
oscillator response for lower values of y would be elastic. No fixed points with a period
greater than T were found and each solution was verified as being symmetric and belonging
to the main branch. Ofcourse the numerical survey can not answer the theoretical questions
regarding the existence of other fixed points, because of the possible fractal structure of the
parameter space, which is not evidenced numerically. However, the study can be considered
exhaustive from a technical point of view.

The stability was also checked, simply by evaluating the single eigenvalue A of Qt
o

'

Figure 10 reports the trend of Aversus W for two values of y. It can be seen that Ais always
lower than 1. The only exceptions are when the response is elastic (where it is known that
the solution is stable, though not asymptotically because of zero damping) and in some
isolated points where stability cannot be assured on the basis of the eigenvalues alone. For
these, a numerical simulation, carried out by integrating over 500 periods starting from
slightly different initial conditions from the fixed points under examination, confirms that
the solution is stable. The fact that all points on the main branch are stable means that
there can be no bifurcated paths of non-symmetric 1-T periodic solutions, which could
generate a sequence of subharmonic orbits with period 2" T, for s = 1,2,3, .... This agrees
with the numerical observation that no subharmonic motion exists.

2.00 v
velocity I' =1.00

2.00

eigenvalues

0.50 1.00 , .50

Fig. 10. Eigenvalues of Qt, versus w.
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CONCLUSIONS

Though the restoring force of an elastoplastic oscillator is not a single-valued function
in the displacement x, by adopting an incremental formulation - J instead of f -it is
possible to describe its motion by means of ordinary differential equations, in the space of
state variables v and f This formulation allows the use of concepts and tools typical of
nonlinear classical mechanics, such as the Poincare map or more general iterated maps. It
greatly simplifies the problem of motion because it is essentially one-dimensional in nature,
on account of the peculiar characteristics of the elastoplastic oscillator, and it is possible to
use one-dimensional maps, which save computations in the evaluation of periodic motion
and stability.

Because of the efficiency of the algorithm an extended numerical survey allowing
clarification of many aspects is feasible. The motion is always asymptotically stable, with
the exception of a few points where it is only stable. All possible orbits have the same period
as the force, so no subharmonic motion is possible. For y close to unity, pronounced
superharmonic effects are evident.
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